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Abstract

Detecting semantic keypoints is a critical intermediate task for object detection
and pose estimation from images. Existing approaches, albeit performing well on
standard benchmarks, offer no provable guarantees on the quality of the detection.
In this paper, we apply the statistical machinery of inductive conformal prediction
that, given a calibration dataset (e.g., 200 images) and a nonconformity function,
converts a heuristic heatmap detection into a prediction set that provably covers
the true keypoint location with a user-specified probability (e.g., 90%). We design
three different nonconformity functions leading to circular or elliptical prediction
sets that are easy to compute. On the LINEMOD Occluded dataset we demonstrate
that (i) the empirical coverage rate of the prediction sets is valid; (ii) the prediction
sets are tight, e.g., a ball with radius 10 pixels covers true keypoint locations on
most test images; and (iii) the prediction sets are adaptive, i.e., their sizes become
larger for keypoints that are difficult to detect and smaller for easy instances.

1 Introduction

Image-based object detection and pose estimation is a longstanding problem in computer vision and
robotics, finding extensive applications in augmented reality [7], autonomous driving [19], robotic
manipulation [12], and space robotics [4]. One of the most popular and best-performing paradigms for
object detection and pose estimation is a two-stage pipeline [15, 14, 17,22,27, 21, 20, 5], where the
first stage (often called feature matching or correspondence learning) uses neural networks to detect
(semantic) keypoints of the objects on the image, and the second stage (often called model estimation)
computes the 6D rotation and translation of the objects by solving an optimization problem, known
as Perspective-n-Points (PnP), that minimizes reprojection errors of the detected keypoints.

Safety-critical applications call for provably correct perception algorithms. For the two-stage pipeline
in object pose estimation, classical [8, 18] and recent [26, 25] works have shown that it is possible to
solve the PnP optimization in the second stage to provable global optimality. However, no existing
works can provide performance guarantees for the neural network-based keypoint detector in the first
stage. Therefore, it remains challenging to ensure the safety of the full two-stage pipeline.

Contributions. We contribute the first framework for detecting 2D semantic keypoints with provable
statistical guarantees. Given a (heuristic) learned detector that outputs a heatmap of a target keypoint,
we leverage the statistical machinery of inductive conformal prediction (ICP) [24, 2] to convert it
into a prediction set that provably guarantees to contain the true keypoint location (a property called
coverage) with a user-specified probability (e.g., 90%). In order to apply the ICP framework, we need
(i) a set of images (e.g., 200) to calibrate the performance of the heuristic detector, which we show is
straightforward to obtain in popular benchmarks [6]; and (ii) a nonconformity function that measures
the performance of the heuristic detector, for which we instantiate three different designs that are
intuitive, easy to compute, and lead to simple prediction sets such as balls and ellipses (cf. Fig. 4). We
validate our framework on the LINEMOD Occluded dataset (LM-O) [3] using the keypoint detector
in [14] and demonstrate that: (i) the user-specified probability of coverage is empirically valid for
all three nonconformity functions; (ii) the prediction sets are tight, e.g., a ball with radius 10 pixels
covers the true keypoint location on most test images; (iii) the prediction sets are adaptive, i.e., they
become larger for keypoints that are difficult to detect and smaller for easy instances.

Paper organization. Section 2 introduces the ICP framework. Section 3 applies ICP to keypoint
detection. Section 4 demonstrates experimental results and Section 5 provides concluding remarks.
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2 Preliminaries: Inductive Conformal Prediction

Given a set {z; = (z;,y;)}\_; with observation x; € X and label y; € ) such that each z; € Z :=
X x Y isdrawn i.i.d. from an unknown distribution on Z, inductive conformal prediction (also called
split conformal prediction) [13, 2] provides a simple yet powerful framework to learn a set prediction
F¢ C Y, parameterized by a user-specified error rate 0 < ¢ < 1, such that given a new sample
zi+1 = (Ti41, Yi+1) satisfying an exchangeability condition (elaborated in Theorem 1), we have

Plyip1 € FS(141)] > 1 — ¢, (1)
i.e., the prediction set F'¢ guarantees to contain the true label y; 1 with probability at least 1 — e.

Training. We start by dividing {z;}!_, into a proper training set {21, ..., 2y} and a calibration
set {Zm+1,- .., 2} We shorthand n = [ — m as the size of the calibration set. We learn a heuristic
prediction function f : X — ) from the proper training set using any method. This flexibility allows
us to fully exploit the power of modern deep learning. The prediction space ) can be the same as
the label space ), or can contain auxiliary information such as a heuristic notion of uncertainty (e.g.,
softmax scores in classification or a heatmap in the case of keypoint detection).

Conformal calibration. Leveraging the learned f, we define a nonconformity function S : Z™ x
Z — R to measure how well a given sample z = (x,y) conforms to the proper training set:

S({le"?ZM}?(xvy)) :T’(y7f(l’)), (2

where r : ) x ) — R is a measure of disagreement between the label y and the prediction f(x). For
example, consider ) = ) = R, one can design r(y, f(z)) = |y — f(z)]: if (x, y) poorly conforms
to the training set, f will incur large errors. While the function S can be arbitrary, (2) is a typical and
convenient definition since f is implicitly dependent on {z; }7* ;. We then compute the nonconformity
score for each sample in the calibration set as o; = r(y;, f(x;)),4 =m + 1,...,1, and sort them in
nonincreasing order (1) > ... > ay (), Where 7(i) € {m +1,...,1} is an index permutation.

Conformal prediction. Given a new observation x;;; (with an unknown label ;1) and a user-
specified error rate ¢ € (0, 1), we compute the inductive conformal prediction (ICP) set as

F(rip1) ={y eV | ¥ < ar((nsn)e)) } > 3)

where oY = r(y, f(x;41)) is the nonconformity score of the new sample when fixing the label to be
y. Fig. | illustrates the conformal calibration and prediction procedure, and we have the following
result stating that the ICP set (3) provides a valid statistical coverage of the true label y; ;.

Theorem 1 (Validity of ICP Coverage [24, 9, 23] If zpma1,---521, 2141 = (Typ1, Y1) are ex-
changeable, i.e., their distribution is invariant under permutation, then

1—e<Ply41 € F(x141)] <1—€+1/(n+1) 4)
Sorany € € (0, 1). Conditioned on the calibration set, we have
Plyis1 € F(xi41) | {zm+1,---,21}] ~ Beta(n + 1 —t,1) (5)

witht = |(n + 1)e|, i.e., the conditional coverage satisfies a Beta distribution.

A few remarks are in order. First, asking z,,41,.. ., 21, 2141 to be exchangeable is weaker than
asking them to be independent. This weaker assumption can be beneficial in handling temporal
correlations [1 1], though for our experiments on LM-O, the calibration and test images are fully i.i.d.
Second, under the exchangeability assumption, o1 = r(yi41, f(x141)) is equally likely to fall
in anywhere between the calibration scores {a(; };—, in Fig. I. Hence, P [y;41 € F(2141)] =
P [ai41 < n((nt1)e)y] = 1= [(n+ 1)e)/(n + 1) > 1 — € and the lower bound in (4) can be
intuitively proved. The upper bound in (4) states that 1 — e is not overly conservative (indeed tight if
n is large) and there exist test samples for which the ICP set fails to contain the true label. Lastly, and
importantly, the probabilistic guarantee in (4) is marginal over the randomness of the calibration set,
which means the empirical coverage, given different calibration sets, will fluctuate as predicted by
the conditional distribution in (5). Fig. 2 plots the Beta distribution at € = 0.1 with different sizes of
the calibration set. We observe that as n increases the empirical coverage becomes more concentrated
at 1 — e. In Section 4, our experiments show that even with a small (n = 200) calibration set, the
empirical coverage is close to, and mostly higher than, 1 — e.
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the new sample is no larger than a; (| (n41)e))- with different 7 in (5).

3 Conformal Semantic Keypoint Detection

To apply ICP to keypoint detection, we need a heuristic detector f and a nonconformity function 7.

Heatmap-based keypoint detector. Given an RGB image x € R¥*W*3_ heatmap-based meth-
ods [14, 17, 10] output f(z) € AFW = {v € RHW | v; > 0,527 v; = 1} where f(z); > 0
indicates the probability of the keypoint on the i-th pixel (we vertically concatenate all pixels). Let
(-) denote an index permutation that sorts f(x) as f(2)(1) > ... > f()r(aw)-

Nonconformity function. It is tempting to treat keypoint detection as a classification problem and
adopt popular nonconformity functions designed for classification (e.g., the one in [16, 1]). However,
in the Supplementary Material we show the resulting prediction sets are loose and hard to interpret.
This motivates us to design the following three nonconformity functions.

(I) Peak. Let ¢* € R? be the pixel location with maximum probability p* := f (%) 7(1)- We design

r(y, f(x)) =p"lly — . (Peak)
According to (3), we have the following inductive conformal prediction set
Fé(aip1) = {y € Y| |y = a1 || < cnnsvyen /pisa } - (ICP-Peak)

This ICP set is a ball centered at g;°, ; with a radius inversely proportional to pj, ;. Intuitively, when
Dy 1 is small, i.e., f(x) is uncertain, the ball is enlarged to account for higher uncertainty.

(I) Variance. Let ¢; € R? be the i-th pixel location. Compute § = Zfil (@) r() - Gr(s) as the

th)

expected location of the top-K keypoints, and 2 = ZZKZI F @)z - |an(s) — @||* as the “variance
(we use K = 100 pixels because the heatmap can be quite noisy). We design

r(y, f(2)) = lly — all/~- (Var)

According to (3), we have the inductive conformal prediction set

Fé(zip) ={y € V| lly — @1l < v10n((nn)e) } - (ICP-Var)

This ICP set is a ball centered at g;+; with a radius proportional to the “standard deviation” ;1.
Intuitively, when the heatmap is spread out and f(x) has higher uncertainty, the ball becomes larger.

(III) Covariance. Compute the expected top-K keypoint location g as before. Then compute the
covariance matrix ¥ = Zfil F(@) i)y - (@r) — D@y — q)". We design
r(y, f(2) = (y - )T= "y~ 9). (Cov)

According to (3), we have the inductive conformal prediction set
F(ri)={yed|y— (?l+1)TEl_+11(l/ — @141) < Un(|(nt1)e)) ) - (ICP-Cov)

This ICP set is an ellipse centered at ;1. The eigenvectors of A; 4 := El;ll / Qr(|(n+1)e)) POINt in
the directions of the principal axes, while the eigenvalues are 1/a? and 1/b2, with a < b the lengths
of the semi-axes. Similar to (ICP-Var), the ellipse gets larger if the heatmap has higher uncertainty.
Different from (ICP-Var), the ellipse better captures nonuniform uncertainty, as we show in Section 4.
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Figure 3: ICP statistics on the LM-O dataset [3] with e = 0.1. In (c), solid and dashed lines correspond
to CDFs of a and b (a < b), respectively. The histograms show that, regardless of the nonconformity
function, the empircal converage is close to, and mostly above 1 — ¢ = 90%. The CDFs show that
the ICP sets are tight, e.g., a ball with radius 10 pixels covers true keypoints for most images.

4 Experiments

We test our approach on the LINEMOD Occluded test set (LM-O) [3] with 1214 RGB images each
containing 8 possible objects. There are in total 76 semantic keypoints labeled by the authors of [17].

Heatmap-based detector. We use a state-of-the-art heatmap-based detector in [17, 14]. Given a 2D
image, we use the groundtruth bounding boxes to generate image patches of single objects, and run
the heatmap detector to get 76 heatmaps (one per keypoint) each with a dimension 64 x 64.

Conformal calibration and prediction. We calibrate the heuristic detector on 200 images taken
from LM-O according to the BOP’19/20 challenge [6]. For each keypoint, we compute nonconformity
scores according to (Peak), (Var), or (Cov), and calculate cq(|(n+1)e)) With € = 0.1. We then
compute (ICP-Peak), (ICP-Var), or (ICP-Cov), on the entire LM-O test set with 1214 images.

We demonstrate the performance of the three ICP sets with e = 0.1. We provide additional results
with € = 0.2 and € = 0.05 in the Supplementary Material.

Validity. The ICP sets, regardless of the underlying nonconformity functions, provide statistically
guaranteed coverage as promised by Theorem |. Fig. 3 plots the histogram of the empirical coverage
of 76 keypoints, i.e., we compute P [y;41 € F€(x;11)] in LM-O for each keypoint and histogram 76
numbers. We see the empirical coverage is close to, and mostly above, 90%.

Tightness. The ICP sets are tight. Fig. 3 plots the empirical cumulative distribution functions (CDF)
of the sizes of the ICP sets: radii for balls and semi-axes for ellipses (each colored curve plots the
CDF for one of the 76 keypoints). We observe that for most keypoints, an ICP set with radius (or
semi-axis) 10 pixels covers over 80% of the test images.

Adaptiveness. Fig. 4 shows qualitative examples of the ICP sets. In the left example, the “duck” is
observable and the heatmap is well predicted, leading to small ICP sets. In the right example, the
“duck” is occluded and the heatmap is spread out, leading to larger ICP sets. The elliptical (ICP-Cov)
sets better capture nonuniform uncertainty. More examples are provided in Supplementary Material.
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Figure 4: Qualitative examples of ICP sets on LM-O [3] with e = 0.1. Squares: true keypoints. Balls
& ellipses: ICP sets. Last image of each row overlays true keypoints, ICP sets of all keypoints, and
the original image. Other images overlay heatmap, true keypoint, ICP set of a single keypoint, and
the original image. Top to bottom: (ICP-Peak), (ICP-Var), (ICP-Cov). Left: easy, right: challenging.

5 Conclusions

We applied inductive conformal prediction for statistically guaranteed keypoint detection. Given a
heuristic heatmap, we design three nonconformity functions and calibrate the heatmap into a circular
or elliptical prediction set that guarantees coverage of the true keypoint location with a user-specified
probability. We demonstrate validity, tightness, and adaptiveness of the prediction sets on LM-O.
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