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Abstract

The deployment of large-scale deep neural networks in safety-critical scenarios
requires quantifiably calibrated and reliable measures of trust. Unfortunately,
existing algorithms to achieve risk-awareness are complex and adhoc. We present
capsa, an open-source and flexible framework for unifying these methods and
creating risk-aware models. We unify state-of-the-art risk algorithms under the
capsa framework, propose a composability method for combining different risk
estimators together in a single function set, and benchmark on high-dimensional
perception tasks. Code is available at: |github.com/themis-ai/capsal

1 Introduction

Neural networks (NNs) continue to push the boundaries
of modern artificial intelligence (AI) systems across
a wide range of complex real-world domains, from
robotics and autonomy [8 19, [15]], to healthcare and
medical decision making [14] [37]. While their per-
formance in these domains remains unmatched, mod-
ern NNs still encounter sudden, unexpected, and in-
explicable failures that are often catastrophic — espe-
cially in safety-critical environments. These failures are
largely due to systemic issues that propagate through-
out the entire modern Al lifecycle, from imbalances
[20L [10] and noise [5] in data that lead to algorithmic
bias [9, 12} [11} 13} 130} 133] to predictive uncertainty
[21, 23, 27]] that plagues model performance on un-
seen or out-of-distribution data. In order to realize the
widespread adoption of Al in society, NNs must not only
identify these potential failure modes, but also effec-
tively use this awareness to obtain unified and calibrated
measures of risk and uncertainty. There is thus a critical
need for unified systems that can estimate quantitative
risk metrics for any NN model, and in turn integrate this
awareness back into the learning lifecycle to improve
robustness, generalization, and safety.

To address these fundamental challenges, we present
capsa — an algorithmic framework for wrapping any
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Figure 1: An example of capsa wrap-
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tation bias, (middle) epistemic uncertainty,
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the algorithmic stages of risk estimation into their core building blocks, we unify different algorithms
and estimation metrics under a common data-centric paradigm. Additionally, because capsa renders
the underlying NN aware of a variety of risk metrics in parallel, we achieve improved performance
and quality in risk estimation. In summary, this paper presents:

1. Capsa, an open-source, easy-to-use framework for equipping arbitrary NNs with calibrated
awareness of different forms of risk, including bias, label noise, and model uncertainty;

2. An algorithm for decomposing risk estimation algorithms into modular components that can
then be composed together to achieve greater efficiency, accuracy, robustness; and

3. Empirical validation of capsa on a range of dataset complexities, modalities, applications
including algorithmic bias identification, incorrect label discovery, and anomaly detection.

2 Related Work

Existing algorithmic approaches to risk quantification narrowly estimate a singular form of risk
in NNs, often in the context of a limited number of data modalities [29, 21, 24} 111}, 42]]. These
methods present critical limitations as a result of their reductionist, ad hoc, and narrow focus on
single metrics of risk. However, generalizable methods that provide a holistic awareness of risk have
yet to be realized and deployed [27, 39]]. This is in part due to the significant engineering changes
required to integrate an individual risk algorithm into a larger machine learning system [38} (16} 6} 34],
which in turn can impact the quality and reproducibility of results. The lack of a unified algorithm
for composing different risk estimation metrics limits the scope and capability of each algorithm
independently, and the robustness of the system as a whole.

3 Background and Methodology

3.1 Preliminaries

We consider the problem of supervised learning on a labeled dataset, {x, y}?_;. Our goal is to learn a
model, f, parameterized by weights, W, that minimizes the average loss over our dataset. While the
model outputs predictions in the form of § = fy (x), we now introduce a risk-aware transformation
operation, ®, which transforms f into a risk-aware variant such that

7, R = Qo (fw(x)), (1)

where R are the estimated “risk” measures from a set of metrics, 8. The goal of this paper is to
propose a common transformation backbone for ®g(-), which automatically transforms an arbitrary
model, f, to be aware of risks, 8. All measures of risk aim to capture, on some level, how trustworthy
a given prediction is from a model. We propose the idea of risk wrappers, which are instantiations of
®y, for a singular risk metric, 6. Wrappers are given an arbitrary neural network and, while preserving
the structure and function of the network, add and modify the relevant components of the model to
estimate the risk metric, 6, and still being a drop-in replacement for f(-).

3.2 Capsa: The Wrapping Algorithm

We present a unified algorithm building ®¢ in order to wrap an arbitrary neural network model. There
are four main components: (1) constructing the shared feature extractor, (2) applying modifications to
the existing model, (3) creating additional models and augmentations if necessary, and (4) modifying
the loss function. We define two types of uncertainty: data-based uncertainty, and model-based
uncertainty (see Appendix [A]for details) and show that capsa can effectively calculate risk metrics
associated with both.

The feature extractor, which we define by default as the model until its last layer, can be leveraged
as a shared backbone by multiple wrappers at once to predict multiple compositions of risk. This
results in a fast, efficient method of reusing the main body of the model. Next, capsa modifies
the existing network according to metric-specific modifications; this could entail modifying every
weight in the model to be drawn from a distribution (to convert to a Bayesian neural network [7]])
or adding stochastic dropout layers [17, 3]]. Depending on the metric, capsa also adds new layers
or augmentations to the model that take the feature extractor output and predict new outputs; for
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Figure 2: Bias on faces. (A) Under-represented and over-represented faces in the Celeb-A dataset
found by capsa using the VAE and HistogramBias wrappers without cherry-picking. As the
percentile bias of the data increases, the skin tone/hair color gets lighter, and lighting gets brighter.
Aleatoric Uncertainty (B) Artifically mislabeled items in the MNIST dataset have the highest
aleatoric uncertainty; and (C) this trend tracks along with the percent of mislabeled examples.
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example, new layers to output o [18]), or extra model copies when ensembling [24]. Lastly, we
modify the loss function to capture any remaining metric-specific changes that need to be made; for
example, KL-divergence [22]], negative log-likelihood [29], etc, as shown in 3]

All of the following modifications are integrated together into a custom metric-specific forward pass,
and train step to capture variations in the forward and backward passes (shown in 2] of data through
the model during training and inference. Our unified wrapping algorithm supports a wide variety of
risk estimation methods (Fig. {}I ranging from: (1) Representational bias from low-density areas of
the feature space(e.g., [22}[32]); (2) Aleatoric uncertainty from noisy or incorrect labels [29] 21]];

and (3) Epistemic uncertainty lack of predictive confidence, measured using Bayesian NN [[7} [17],
likelihood estimation [2], ensembling [24]], or even reconstruction-based approaches. Details on
how capsa modifies the input models for all of the above cases are available in the appendix.

3.3 Metric Composability

We propose a novel composability algorithm to create more robust ways of estimating risk (e.g.,
by combining multiple metrics together into a single metric, or alternatively by capturing different
measures of risk independently). We leverage our shared feature extractor as the common backbone
of all metrics, and incorporate all model modifications into the feature extractor. New model
augmentations are applied either in series or in parallel, depending on the use case. Lastly, the model
is jointly optimized using all loss functions by computing the gradient of each loss with regard to
the shared backbone’s weights and stepping into the direction of the accumulated gradient. Further
details are explained in Algorithm [2]and Section [B.1]

4 Experiments and Results

In the following section, we analyze the risk metrics obtained by wrapping various models with
capsa on several datasets. We show that capsa provides accurate, scalable, composable risk
metrics that are efficient and can be used to quantify bias, aleatoric, and epistemic uncertainty.

Representation Bias — Using capsa’s bias wrapper, we analyzed the Celeb-A [26]] dataset on the
task of facial detection. Fig.[2JA qualitatively inspects the different percentiles of bias ranging from
underrepresentation (left) to overrepresentation (right). We found that the underrepresented samples
in the dataset commonly contained darker skin tones, darker lighting, and faces not looking at the
camera. As the percentile of the bias gets higher, we see that the dataset is biased towards lighter skin
tones, hair colors, and a more uniform facial direction.

Aleatoric Uncertainty — Next, we test capsa’s ability to successfully detects label noise in datasets
using aleatoric uncertainty estimation— specifically (MVE) [29]]. In the following experiment, we
replaced a random collection of the 7s in the MNIST dataset with 8s. As shown in Fig. 2B, the
samples with high aleatoric uncertainty are dominated by the mislabeled examples, and also include a
naturally mislabeled sample. We further test capsa’s sensitivity to mislabeled datasets by artificially
corrupting our labels with varying levels of probability p. In Fig. 2IC, as p increases, the average
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Figure 3: Risk estimation on monocular depth prediction. (A) Example pixel-wise depth predic-
tions and uncertainty. Model uncertainty calibration for individual metrics (B) and composed metrics
(C). OOD detection assessed via AUC-ROC (D) and a full p.d.f. histogram (E).

uncertainty also increases. These experiments highlight capsa’s capability to serve as the backbone
of a dataset quality controller and cleaner, due to its high-fidelity aleatoric noise detection.

Epistemic Uncertainty — We demonstrate how capsa’s ability to compose multiple methods (e.g.,
dropout and VAEs) can achieve more robust, efficient performance. We combine aleatoric methods
with epistemic methods (i.e., ensembling the MVE metric) to strengthen aleatoric methods (being
averaged across multiple runs) or alternatively treat the ensemble of MVEs as a mixture of normals.
Similarly a weighted sum of normalized variances compose VAE and dropout.

We demonstrate capsa for large-scale risk and uncertainty benchmarking framework for existing
methods in the community. To that end, we train a U-Net style model on the task of monocular
end-to-end depth estimation (see Tab. [T). Importantly, capsa works “out of the box™ without
requiring any modifications since it is a highly configurable, model-agnostic framework.

Specifically, we use a U-Net style model Table 1: Monocular depth. VAE + dropout outper-
with a single ouput channel and wrap it with  forms all other methods while being more efficient.

capsa. We then train the wrapped model Test Loss NLL 00D AUC
on NYU Depth V2 dataset [28] (27k RGB- Base 0.0027 + 0.000 _ _
to-depth image pairs of indoor scenes) and VAE 0.0027 £ 0.000 , 0.8855 % 0.036
evaluate on a disjoint test-set of scenes. Addi- Dropout 0.0027 £0.000 0.1397 £0.012  0.9986 + 0.003
. P Ensembles  0.0023 +0.000 0.0613 £0.022  0.9989 = 0.002
tionally, we use outdoor driving images from MVE 0.0036+0.001 0.0532%0.022 0.9798 + 0.012

ApolloScapes [25] as OOD data points. Dropout + MVE ~ 0.0027 £0.000  0.1291 £0.015  0.9986 + 0.003

VAE + Dropout ~ 0.0027 £0.000  0.0932 + 0.020  0.9988 + 0.002

Another application of capsa is foranomaly Vi UVE 000340001 0174450016 0.9823 % 0,010

detection. It is critical for a model to recognize
when it is presented with an unreasonable input; in the real world, this could be used for determining
when an autonomous vehicle should yield control to a human if the perception system detects that
it is presented with such an input. The core idea behind this approach is that a model’s epistemic
uncertainty on out-of-distribution (OOD) data is higher than on in-distribution (ID) data. Thus, given
a risk-aware model we visualize density histograms of per image uncertainty estimates provided by a
model on both ID (unseen test-set for NYU Depth V2 dataset) and OOD data (ApolloScapes) (see
Fig.[BE). At this point, OOD detection is possible by a simple thresholding set by a validation set.
We use AUC-ROC to quantitatively assess the separation of the two density histograms (see Fig. 3D).

5 Conclusions

We present a unified model-agnostic framework for risk estimation, which enables identifying and
mitigating safety critical issues in existing models for more trustworthy Al. Our approach opens new
avenues for greater reproducibility and benchmarking. We showcase how our method can compose
different algorithms together to quantify different risk metrics efficiently in parallel, and be used
for the downstream tasks (e.g., bias identification, label cleaning, anomaly detection). We further
show how the framework yields interpretable risk estimation results that can provide a deeper insight
into decision boundaries of NNs. Capsa can further be used to feed model uncertainties back
into training processes to debias models [4], perform active learning [41], or quality control [35]].
Capsa is available at https://github.com/themis—ai/capsa/|with the goal of accelerating
and unifying community advances in the areas of uncertainty estimation and trustworthy Al In
the future, we plan to extend support to other data modalities (e.g., irregular types such as graphs,
temporal data, etc), as well as to support other model types.
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A Risk Metrics and Background

In this section, we outline three high-level categories of risk which capture the different forms of risk
metrics that we quantitatively define and estimate.

Representation Bias - The representation bias of a dataset uncovers imbalance in the feature space of
a dataset and captures whether certain combinations of features are more prevalent than others. Note
this is fundamentally different from label imbalance, which only captures distributional imbalance
in the labels. For example, in driving datasets, it has been demonstrated that the combination of
straight roads, sunlight, and no traffic is higher than any other feature combinations, indicating that
these samples are overrepresented [1]]. Similar has been shown for facial detection [11} 4], medical
scans [31], and clinical trials [40]. Uncovering feature representation bias is a computationally
expensive process as these features are (1) often unlabeled, and (2) extremely high-dimensional
(e.g., images, videos, language, etc), but can be estimated by learning the density distribution of
the data. We accomplish this by estimating densities in the feature space. For high-dimensional
feature spaces we estimate a low-dimensional embedding using a variational autoencoder [22]] or by
using the features from the penultimate layer of the model. Bias are the estimated as the imbalance
between parts of the density space estimated either discretely (using a discretely-binned histogram)
or continuously (using a kernel distribution [32]).

Aleatoric Uncertainty- Aleatoric uncertainty

captures noise in the data: mislabeled datapoints, Algorithm 1 Aleatoric Uncertainty in Classification

ambiguous labels, classes with low separation, 1: p,0 « fw () > Inference
etc. We model aleatoric uncertainty using Mean ~ 2: fori € 1.7 do > Stochastic logits
and Variance Estimation (MVE) [29]. In the re- 3 Zep+oxe~N(0,1)

gression case, we pass the outputs of the model’s 4 end fOll‘ T . .
feature extractor to another layer that predicts > N %izl z > Average logit
the standard deviation of the output. We train 0 ¥ < W > Softmax probability
using NLL, and use the predicted variance as an ~ 7: L(z,y) <= — >, y;j logp; > Cross entropy loss

estimate of the aleatoric uncertainty. We apply
a modification to the algorithm to generalize also to the classification case in Alg. [T} We assume
the classification logits are drawn from a normal distribution and stochastically sample from them
using the reparametrization trick. We average stochastic samples and and backpropogate using cross
entropy loss through those logits and their inferred uncertainties.

Epistemic Uncertainty- Epistemic uncertainty measures uncertainty in the model’s predictive
process — this captures scenarios such as examples that are "hard" to learn, examples whose features
are underrepresented, and out-of-distribution data. We provide a unified approach for a variety of
epistemic uncertainty methods ranging from Bayesian neural networks [7], ensembling [24]], and
reconstruction-based [22]] approaches. Below, we outline three metrics and how they each fit into
capsa’s unified risk estimation framework.

A Bayesian neural network can be approximated by stochastically sampling, during inference, from a
neural network with probabilistic layers [7} [17]. Adding dropout layers [36] to a model is one of the
simplest ways to capture epistemic uncertainty [17]. To calculate the uncertainty, we run 7" forward
passes, which is equivalent to Monte Carlo sampling. Computing the first and second moments from
the 7" stochastic samples yields a prediction and uncertainty estimate, respectively.

An ensemble of N models, each a randomly initialized stochastic sample, presents a gold-standard
approach to accurately estimate epistemic uncertainty [24]]. However, this comes with significant
computational costs. To reduce the cost of training ensembles, capsa automates the construction and
management of the training loop for all members of the ensemble and parallelizes their computation.

Variational autoencoders (VAEs) are typically used to learn a robust, low-dimensional representation
of the latent space. They can be used as a method of estimating epistemic uncertainty by using the
reconstruction loss M SE(Z, ) - in cases of out-of-distribution data, samples that are hard to learn,
or underrepresented samples, we expect that the VAE will have high reconstruction loss, since the
mapping to the latent space will be less accurate. Conversely, when the model is very familiar with
the features being fed in, or the data is in distribution, we expect the latent space mapping to be robust
and the reconstruction loss to be low. To construct the VAE for any given model in capsa, we use
the feature extractor as the encoder, and reverse the feature extractor automatically when possible to
create a decoder.
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Figure 5: Capsa wrapping algorithm. (A) Given a specific metric, capsa modifies the model,
augments it further if necessary, and adds terms to the loss function (B) Applying risk metrics in
parallel means that the feature extractor is modified by in series, and then specific layers and loss
funcions are independent of each other.

B Additional Methodology

B.1 Composability

We can compose results from multiple uncertainty estimation metrics in two ways: by applying them
in parallel or in series. Applying metrics in parallel means that we independently estimate two metrics
6, and 5, where the only thing shared is the feature extractor (to avoid repeated computation). The
modifications to the feature extractor, denoted here as Uy, are applied in series as we utilize the same
feature extractor for all metrics. In order to combine the predictions, we can normalize and sum
them. We use this when combining multiple predictions of the same type: i.e. VAEs and Dropout, or
Ensembles and VAEs, since the quantity being estimated— model uncertainty— is the same in both
cases. Results from this type of composability are shown in 3]

Another method of composability involves combining wrappers in series. This means that we wrap a
model first with 67, and then subsequently wrap again with 6. This results in the layers after the
histogram added by 6; to be subsequently modified by #5. A concrete example of this is ensembling
an MVE metric. To wrap a model with MVE, we add in extra layers and change the loss function
formulation. When we subsequently wrap this with an EnsembleWrapper with N members, we
measure [N distributions estimated by the MVE. We can combine these N distributions either by



Algorithm 2 Composed backwards pass

1: f, A, L <~ wrap(m, O) > Wrapped user model feature extractor and last layer
2: 2+ f(x)

3322 +0

4: procedure TRAIN(x,y)

5: for 6 € © do

6: 7+ Ag(2) > Metric-customized last layer
7: £+ L(z,y) + Lo(z,y)

8: gf — g—f + % > Accumulate gradients wrt feature extractor
9: Ag, — Ao, —nVa,¥) > Directly update parameters of last layers
10: end for
11 % — % 8‘3,2 > Calculate gradient for feature extractor
12: fw— fw—n E)afﬁ, > Update weights of feature extractor
13: end procedure

averaging them for a more robust estimate of the MVE, or we can treat the distributions as a mixture
of normals as done in [24]].

Algorithm[2]shows the computation of the custom backwards pass when combining metrics in parallel.
For every metric, we update the corresponding metric-specific augmentations, denoted by Ay, directly
and accumulate the gradients for the feature extractor for every loss function Lgy. After calculating all
of the metrics, we update the weights of the feature extractor accordingly.

C Additional Experiments

C.1 Bias

With our approach, we high- A. Bias vs Accuracy B. Bias vs Uncertainty
hght a Cr.ltlcal dlffere.nce b.e- Overrepresented Most Underrepresentation Bias
tWeen b]as and eplstem]c 100%4 Contains features which are not represented in

the dataset (skin color, genders, low light, etc)

Most Epistemic Uncertainty

Contains features which hinder the predictive
power (obstructions, glasses, masks, etc)

2 I

facts such as sunglasses and 4

hats), shown in Figure@ 96% - . Underr?presentled . . g ﬁi g
0.00 0.25 0.50 0.75 1.00 ‘

USing the bias tools pro- Estimated Bias Percentile

vided by capsa, one ap-

plication is to not only es- Figure 6: Epistemic and Biased Samples (A) Accuracies of samples

timate and identify imbal- that the dataset is biased against are lower than those it is biased

ance in the dataset (which towards (B) Difference between underrepresented data and epistemic

we show also leads to per- data. Underrepresented samples contain darker skin tones and lighting,

formance bias) but to ac- while samples with high epistemic uncertainty contain rare artifacts.

tively reduce the perfor-

mance bias by adaptively re-sampling datapoints depending on their estimated representation bias

during the course of training. The benefits of this are twofold — we can improve sample efficiency by

training on less data if some data is redundant, and we can also oversample from areas of the dataset

where our latent representation is more sparse.

estimation methods. The
samples estimated to have
the highest epistemic un-
certainty were not necessar-
ily only underrepresented,
but also contain features
that obscure the predictive
power of the model (e.g.,
faces with colored lighting,
covering masks, and arti-

Average Accuracy

99%

98%+

97%

Percent Accuracy (Facial Detection)

'_ﬂ

By composing multiple risk metrics together (in this case, VAEs and histogram bias) we can achieve
even greater robustness during training, more sample efficiency, and combine epistemic uncertainty
and bias to reduce risk while training.
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A. Random Samples B. Highest Aleatoric

Label: Label: Label: Label:
T-Shirt/Top Shirt T-Shirt/Top Shirt
n L=

il - L

1
L
L)

Average Aleatoric: 0.0015 Average Aleatoric: 0.582

R
LL§

Figure 7: Fashion MNIST Aleatoric Uncertainty (A) Randomly selected samples from two classes
of fashion-mnist. These samples are visually distinguishable, and have a low aleatoric uncertainty,
as opposed to (B), which shows samples with highest estimated aleatoric noise. It is not clear what
features distinguish these shirts from tshirts/tops, as they have similar necklines, sleeve lengths, and
cuts.

C.2 Aleatoric Uncertainty

In addition to MNIST, we also experiment with natural noise in the FashionMNIST dataset, which
contains two very similar classes: “tshirt/top” and “shirt”. The methods presented in capsa identify
samples in Fashion-MNIST with high aleatoric uncertainty in Figure[7} which are light sleeveless
tops with similar necklines with minimal visual differences. Short-sleeved shirts with round necklines
are also classified as either category. Compared to randomly selected samples from these two classes,
the samples that capsa marks as noisy are visually indistinguishable, and difficult for humans (and
models) to categorize.
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