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Abstract

Recent work has shown promise towards training policies for contact-rich tasks in
simulation with the hope that they can be transferred to the real world. However, to
close the sim2real gap, it is important to consider the effects of partial observability
that are unavoidable in the real world and particularly relevant when dealing
with small parts that require precise manipulation. In this work, we perform a
detailed simulation-based analysis of how pose-estimation error, object geometry
variability, and controller variability affect deep reinforcement learning algorithms.
We show that using asymmetric actor-critic architectures leads to more robust
training under noise.

1 Introduction

With recent advances in simulation technologies and deep reinforcement learning (DRL), there has
been increased interest in sim2real approaches for robotic control [2, 3| |6]. In the manipulation
domain, Narang et al. [13] develop techniques to efficiently simulate contact-rich tasks such as
plug insertion or nut-on-bolt fastening — an important foundation for sim2real transfer in industrial
assembly. Further, they demonstrate that DRL algorithms succeed at nut-on-bolt-fastening within
their simulator. Although an impressive result, the simulated policy relies on full state observations
and does not consider relevant factors for real world deployment such as partial observability and
model misspecification. This is a significantly more challenging scenario, as exploratory behavior
may be necessary to perform a task (e.g., the robot may need to search for nut/bolt alignment to
account for pose uncertainty).

In the real world, partial observability is unavoidable and arises from many sources. Sensors are
noisy, have limited range, and suffer from occlusion — all exacerbated by small parts typical in robotic
assembly. Object models may be unknown and are subject to manufacturing tolerances. Furthermore,
intrinsic robot parameters (e.g., inertial parameters or joint friction) may have been estimated through
an imperfect system identification (SysID) process. Indeed, a large body of evidence suggests that
task performance degrades as a function of all these types of uncertainty [} 21} [22].

To move towards real-world policy deployment, we perform an extensive simulation-based analysis
of a policy’s ability to adapt to sources of uncertainty that would be present on the real robot: pose
uncertainty, manufacturing tolerances, and controller differences. These insights are especially
relevant for sim2real approaches where the model of the environment (i.e., the simulator) is unlikely
to exactly match the real world. We evaluate three components of the PPO algorithm [18]] (and its
extensions) that we hypothesize will be relevant when dealing with partial observability: the discount
factor, recurrent policy and value networks, and asymmetric actor-critics architectures. We find that
using a privileged critic contributes the most to robust success under moderate levels of noise.

*Corresponding author: mnosew@mit . edu. Work done while interning at NVIDIA.

NeurIPS 2022 Workshop on Robot Learning: Trustworthy Robotics, Virtual, Virtual



Uniform Range

Normal 10

Medium: 2.5 mm
High: 5 mm

Figure 1: [Left] The real robot will be subject to pose estimation error and model inaccuracies.
[Middle] Visualization of the uncertainty regions from noise added to the initial nut/bolt poses.
Both uniform (top) and normal (bottom) noise distributions are considered. [Right] Initial state
visualization where the red assets represent the initial pose estimates under high noise.

2 Problem Description

Nut-on-Bolt Fastening Domain: We are motivated by contact-rich manipulation tasks. In particular,
we focus on the nut-on-bolt assembly environment introduced by Narang et al. in the industrial
assembly domain. Nut-on-bolt assembly has been identified as an important benchmark task as it is
found in ~ 40% of mechanical assembly operations [11]. In this environment, a Franka Panda robot
initially grasps a nut, which is not in contact with the bolt. The nut and bolt assets are defined to match
ISO standards and for each size (e.g., M4 or M16) can vary between tight and loose configurations
representing the manufacturing bounds of the clearances between parts. The goal is to fasten the nut
to the bolt by first engaging it, and then lowering it by two threads (see Figure [T]left). For a formal
description, including a list of state variables, please see Appendix [B.1]

Sources of Error: We consider observation uncertainty for the nut, bolt, and robot model. These
assumptions are used to justify the noise models introduced in our experiments section:

Pose Estimation Error: From our experience with real-world laboratory settings, camera intrinsics
for off-the-shelf cameras (e.g., Intel RealSense D415) can be reliably obtained from manufacturers.
Calibration procedures for camera extrinsics obtain the transform between camera and robot. Through
multiple image observations, this error can be small. We also assume the use of RGB-only sensors,
which are not subject to the artifacts frequently present in depth sensors. Thus, the dominant source
of error is instead from a downstream pose estimator. For a state-of-the-art estimator that leverages
known object models [9]], we estimate the maximum position and orientation error of the nut and bolt
to be 1 cm (Euclidean distance) and 3—7 deg. We also note that the pose of the nut in the gripper
could be estimated more accurately by use of tactile sensors (e.g., GelSight).

Object Variation: In industrial assembly, we often have access to CAD part models. However, since
parts are subject to manufacturing tolerances, these models have limited instance-level accuracy (e.g.,
tolerances can cause the clearance for an M16 nut/bolt pair to differ up to 0.5mm).

Robot Arm Model: As observed in previous work [22], there may also be inaccuracies in the robot
model that can manifest as inaccurate proprioceptive state estimation or noisy control. The causes
include robot arm tolerances, joint encoder calibration error, structural loading, as well as repeatability
of the motor, gearboxes, and joint encoders. Of these, joint encoder calibration error (also referred to
as joint-offset error) is known to be the most significant [22]]. This error is on the order of 3-6 mm.
These differences can lead to similar controllers having different behaviours across robot instances.

3 Approach: Asymmetric Recurrent RL with Domain Randomization

In this section, we describe a robust pipeline for training policies for contact-rich tasks using the
Proximal Policy Optimization (PPO) algorithm. We combine PPO with Domain Randomization and
identify important hyper-parameters that lead to robust performance under partial observability.

Preliminaries: Across experiments, we use the Proximal Policy Optimization algorithm [I8]] due to
its previously demonstrated success in contact-rich domains [3l [13]]. The action space for the robot
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Figure 2: Pose Estimation Noise Results: [Left] Success rates for the policies trained on a given noise
level and evaluated on another. [Top Right] Success rates (and average time to success) for policies
trained for the full model. [Bottom Right] Success rates (and average time to success) with ablated
model components. For all experiments, noise is added once at the start of the episode.

is a 4-dimensional Operational Space Controller (OSC), where the policy outputs x, y, z, and yaw
offsets for the end-effector while the OSC separately maintains an upright orientation with pitch and
roll dimensions. As in previous work[13]], the end-effector has no rotational limitE] To cover a variety
of task instances, the initial state of each episode is randomized by varying the nut’s pose relative to
the gripper, the bolt’s pose, and the hand’s relative pose above the bolt (see Appendix [B.2).

PPO with Partial Observability: We will investigate how the following hyperparameter and
architecture choices affect the performance of PPO. The Full Model uses each of these components:

Asymmetric Actor-Critic: In simulation, we have access to privileged state. Following the work of
Pinto et al. [15]], we propose for the actor to use noisy observations while the critic uses the noiseless
state. The Symm Baseline refers to using a symmetric actor-critic architecture.

Discount Factor: The discount factor affects how far into the future the agent can reason. We hypoth-
esize that having a larger discount factor may be important for developing exploratory behaviours.
The Full Model uses a discount factor of 0.999 while the Low Discount Baseline uses 0.99.

Recurrent Policies: We postulate that using a history of observations trains the agent to adapt to
environment parameters relevant to the task. Recurrent neural networks (RNNs) lend themselves
naturally to sequence processing, so we adopt LSTM layers in the actor and critic networks. The
MLP Baseline uses MLP layers instead.

Domain Randomization: Domain randomization has been shown to be an effective way to improve
robustness and transferrability of learning agents [3} 20]; however, not all types of randomization
are valuable and useful [12]]. We investigate what types of domain randomization are valuable for
contact-rich manipulation motivated by the discussion of real-world challenges in Section

Part-Pose Randomization: This is the most evident randomization parameter based on experience
with real-robot policy deployment. To mimic a noisy pose-estimation pipeline, we consider a scenario
where the pose estimator is only run once at the beginning of each episode (see Appendix [B.3). Noise
is added to the initial pose of both the nut and the bolt, and then the robot must use these noisy
estimates for the entire episode. We introduce three levels of observation noise (for both uniform and
normal distributions) during training to capture typical levels of noise expected in the real world (see
Section [2). Figure [I]shows a visualization of the noise levels in our experiments.

Part-Geometry Randomization: Parts typically have manufacturing tolerances that prescribe a level of
variability beyond mere scaling. For example, nuts and bolts have variabilities in their thread spacing
(i.e., pitch), which are not captured by the typical XYZ scale randomization. To randomize over this
parameter, we use multiple assets that represent the ends of standard manufacturing tolerances.

Controller-Parameter Randomization: We also investigate robot-related partial observability. For
the same action space, policy behavior might vary depending on robot controller parameters and
robot kinematic/dynamic parameters (link lengths, masses, etc.), among others. While robot dynamic
parameters are difficult to efficiently randomize during parallelized training, we start to address this

2Although this makes the task easier, it is an important limitation to remove for sim2real transfer.
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Figure 3: Success rates for policies trained Figure 4: Success rates for policies trained with dif-
using assets with different thread clearances ferent control stiffnesses. Controllers 1-5 use fixed
within the manufacturing tolerance range.  gains, while DR-low & DR-high had variable gains.

question by analyzing how well policies generalize to controllers of different stiffnesses. We hope
this will give initial insight into how policies can generalize to controllers with different behaviours
and leave a full treatment of unobserved robot models to future work.

4 Experiments

Details on our training and evaluation pipeline can be found in Appendix

Pose Observation Noise: Figure |Z| shows the results of training PPO (Full Model) under various
levels of observation noise. First, on the left, we see that policies trained with low noise levels fail
to generalize to higher noise settings (as expected). Our second observation (seen on the top right)
is that episode success length is longer when more noise is present. This is likely due to the extra
exploration needed to succeed. Finally, we present the results of our ablation study that show that the
asymmetric actor-critic architecture was the most important factor in achieving robust performance
under high noise (bottom right). More detailed ablation results can be found in Appendix [C]

Object Model Uncertainty: Figure[3|shows the result of training a policy with assets of a specific
configuration (i.e., tight or loose) and evaluating on the others. No other types of uncertainty are
added and the policy does not receive the asset configuration as input. For these experiments, we use
the Full Model and present an ablation of the RNN in Appendix [D| The object configurations appear
to be small enough to not make a difference on generalization. In Appendix [D] we show that the
MLP policy performs worse on the tight configuration, which is remedied by domain randomization.

Controller Uncertainty: Finally, we report the performance of five policies evaluated using con-
trollers of different stiffnesses than those they were trained on (ranging from low to high stiffness).
No other forms of uncertainty are considered. In addition, we evaluate policies that were trained with
randomized controller gains (DR-low and DR-high, see Appendix [B-4). Results in Figure @] show that
most policies do well when using the controller they were trained on but degrade as the evaluation
stiffness changes. However, domain randomization improves policy robustness. This initial result
shows promise for using DR to adapt to controller inaccuracies, and we plan to next evaluate if this
result also holds for misspecified robot kinematic and dynamics parameters.

5 Conclusion

To conclude, we posit that domain transferability and partial observability are tightly connected. Our
results show that success in contact-rich tasks is sensitive to parameters which are often uncertain.
Careful consideration of control, estimation, and object models is important to adapt to variations
expected in the real-world. One promising approach to better address this uncertainty includes
integrating rich sensing modalities (e.g., tactile or force feedback) with state-of-the-art RL algorithms.
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[ Initial State Variable [ Min [ Max ]

Bolt Position (z,y,2) || (=0.01m, —0.01m, —0.01m) | (0.01m,0.01rm, 0.01m)
Nut Position (z, z) (—0.006m, —0.003m) (0.006m, 0.003m)

EE Position (z, y, z) (=0.01m, —0.01m, —0.005m) | (0.01m, 0.01m,0.005m)
EE Orientation (yaw) —3.14rad 3.14rad

Table 1: Randomization ranges used to sample offsets from a default initial state for each episode.

Appendix

A Related Work

Nut-on-Bolt Fastening: Nut-and-bolt fastening is an ubiquitous task in robotic assembly [7]]. Many
works consider tool-use (e.g., nut runners) for this task which aid in applying the appropriate torque
and reducing uncertainty [7]. Holladay et al. [5] consider the task of twisting a nut that is already
on a bolt. They focus on multi-stage planning where it may be necessary to fixture the bolt while
applying a torque to the nut. In our work, we instead focus on the initial nut engagement but assume
the bolt is fixed to the workspace. Narang et al. [13] consider the entire Screw task (e.g., picking,
engaging, and lowering), but do not address uncertainity that would be present in the real world. Son
et al. [[19] successfully show sim2real transfer for an M48 nut/bolt pair while considering sensing
noise. We build upon the insights of this work by considering much smaller parts (M 16 nut/bolt pair)
and additional forms of uncertainty.

Sim2Real Transfer: With advancements in reinforcement learning and parallelizable simulation,
there has been much interest in sim2real transfer for complicated control problems. Of note include
legged locomotion [6, [1} |10, [16] and in-hand manipulation [2} 3| 4]]. These works use techniques
such as domain randomization and policy distillation to bridge the sim2real gap. We are interested in
using similar techniques in the industrial assembly domain [14} [19].

B Experiment Details

B.1 Problem Formulation

We formalize the nut-on-bolt assembly problem as a Partially-Observable Markov Decision Process
(POMDP). We will first describe the fully-observable MDP and later evaluate the effects of making
different components of the state partially observable. The corresponding MDP is defined by the
tuple (S, A, T,R,~). Concretely, the state space, S, is represented by the robot’s end-effector
pose and velocity, p.. and v, the nut’s pose, p,.¢, the bolt’s pose, ppoit, and the nut/bolt’s thread
configuration, ¢ € {loose, tight}. The action space, A, are setpoints for a 4-dimensional operational
space controller. The transition matrix, 7, is implicitly defined using the Factory simulator from
Narang et al. [[13]]. Finally, the reward function, R, is defined using a keypoint reward that encourages
the policy to align keypoints for the nut with keypoints located two threads below the top of the bolt.

B.2 Initial State Randomization

In all experiments, we randomize the initial state of the robot gripper, nut, and bolt around a default
initial state. The default initial state has the robot holding the nut 1em above the bolt. The nut pose
is randomized to stay within the gripper and be parallel to the table (and hence no y-randomization
is needed). The same randomization range is used during both training and evaluation. Initial state
randomization ranges can be found in Table [I]and correspond to the range of a uniform distribution.

B.3 Pose Estimation

In this work, we add noise to the nut and bolt poses by mimicking a pose estimator running only once
at the beginning of each episode. Specifically, at the start of each episode, we add noise to the bolt’s
pose as well as to the relative transform between the nut and the gripper. These are fixed for an entire
episode, and at each timestep the global pose of the nut is computed by applying the noisy relative
transform to the end-effector’s pose.



Table 2: Success rates (and average time to success) for policies trained with varying levels of

[ Noise Level

[[ Normal

| Uniform

None (0mm)
Low (1mm)

High (5mm)

Medium (2.5mm)

0.992 £ 0.00 (3.82s)
0.990 £ 0.01 (4.06s)
0.992 £+ 0.01 (4.52s)
0.979 £ 0.01 (4.615)

1.000 £ 0.00 (3.66s)
1.000 £ 0.00 (3.99s)
0.997 £ 0.01 (4.20s)
0.992 £+ 0.01 (4.325)

pose-observation noise added to both the nut and the bolt.

Discount MLP RNN

Factor

0.99 0.992 £0.00 | 0.974 £0.04 | [ Critic Architecture [[ MLP | RNN l

0.996 0.979 £0.01 | 0.971£0.02 Asymm 0.932+£0.13 | 0.987 £0.01

0.998 0.979 £0.01 | 0.9824+0.01 Symm-Separate 0.599 £0.30 | 0.951 +£0.01

0.999 0.992 +£0.01 | 0.992 £ 0.01 Symm-Shared 0.451 £0.42 | 0.943 +£0.01
Table 3: Success rates for policies trained un- Table 4: Success rates for policies trained under high

der high noise with different discount factors. noise using different critic architectures.

By only mimicking an initial pose estimate, we do not rely on properly modeling the correlation
between consecutive pose estimates in the real world. These correlations could be affected by factors
such as occlusion, lighting conditions, and camera model properties that would be difficult to model
in simulation. Overfitting to a wrong noise model could lead to policies that do not transfer to the
real world. Furthermore, it is easier to implement initial pose estimation than a full tracking system
that handles occlusion in the real world.

B.4 Controller Randomization

We consider a controller randomization setup where at the beginning of each episode, we sample
new controller PD gains for the operational space controller. The P gains are sampled uniformly
and independently in each dimension from the randomization range while the D gains are set to be
critically damped as K4 = 2\/71, . The randomization range is determined by the randomization
level, L, which sets the range to (K'/L, K'L) where K’ is a default gain (also specific to each
dimension). Although typically, the policy will know the gains of the underlying controller (and
is even able to control them), we design this experiment to gain insight into how well a policy can
adapt to controllers with different behaviour which would more typically be caused by uncertainty
in robot kinematic and dynamic parameters. This is because IsaacGym currently does not support
randomization over robot model parameters at the beginning of each episode. We expect randomizing
over the actual robot parameters will be important for sim2real transfer as these differences may
induce different behaviour changes than those from only varying controller stiffness.

B.5 Evaluation Methodology

For each experiment we first train a policy on the nut-on-bolt engagement task. During training, we
save the policy that achieves the best return. At evaluation time, we evaluate task success averaged
over 128 environments. In total, each reported statistic is averaged over 3 seeds with 128 evaluation
episodes per seed. For both training and evaluation we use a maximum episode length of 1200 steps
(20 seconds). Generalized Advantage Estimation is used for all models [[17].

C Additional Pose Uncertainty Results

C.1 Uniform vs. Random Noise

We consider two different noise distributions for adding noise to the initial pose estimates: Uniform
and Gaussian. As seen in Table E], the Full Model (RNN, high discount factor, and asymmetric
architecture) performs well in both scenarios.
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Figure 5: Success rates for MLP policies Figure 6: Success rates for policies trained with differ-
trained using assets with different thread ent control stiffnesses and high Gaussian pose noise.
clearances within the manufacturing toler- Controllers 1-5 were trained with fixed parameters,
ance range. while DR-low & DR-high had variable gains.

C.2 Discount Factor Ablation

To determine if the discount factor has an impact on policy performance under noise, we consider
4 different values: v = 0.99,0.996,0.998,0.999. For this ablation we use an RNN policy and
asymmetric critic. We find that there is not a significant difference between different values of +,
suggesting that the training pipeline is fairly robust to this parameter.

C.3 Asymmetric Critic Ablation

To measure how important it is to use a critic that has access to ground-truth state, we ablate the
critic in the full model (Asymm). Specifically, we consider baselines where the critic uses the noisy
observation with a separate value network (Symm-Separate) as well as a shared base network with
the actor (Symm-Shared). Note the Asymm model uses a separate value network.

In Table[d] we report success rates for policies trained under a high-level of Gaussian observation
noise. we see that for both MLP and RNN policies, the asymmetric critic outperforms both baselines
(the gap is wider in the MLP case). Using an asymmetric critic significantly helps in training policies
that are robust to noise.

D Additional Object Model Uncertainty Results

Although in Section [d we showed the Full Model was insensitive to variation in object models, Figure
[5] shows that the model using an MLP (instead of RNN) struggles for the tight configuration. This
appears to be due more to the difficulty of training on only the tight configuration rather than to
partial observability, as training on only the loose configuration generalizes well to evaluation on the
tight configuration.

E Additional Controller Uncertainty Results

E.1 Success Times

Controllers with different stiffnesses lead to different task completion times. Table [5] shows the
average time-to-success for policies trained and evaluated using controllers of varying stiffness. As
expected, stiff controllers lead to faster task execution; however, success time increases when more
noise is added.



[ Stiffness [ 1(Low) [2 [3 [4 [ 5 (High) ]
No Noise (0mm) 14.6s 11.8s 7.7s 4.2s 1.9s
High Noise (5mm) 14.4s 12.2s 8.9s 4.65 2.5s
Table 5: Success times for different controller stiffnesses and different levels of Gaussian noise.

E.2 Pose and Control Uncertainty

Figure[6|repeats the experiment from Figure {f] with high Gaussian pose estimation noise. Comparing
these two figures shows that changing the controller stiffness at test time leads to more pronounced
performance degradation when there is also observation noise present. Domain randomization of
control stiffnesses during training (see last two rows) leads to increased robustness to test-time
variability.
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