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Abstract

Recent progress in unsupervised skill discovery algorithms has shown great promise
in learning an extensive collection of behaviors without extrinsic supervision. On
the other hand, safety is one of the most critical factors for real-world robot
applications. As skill discovery methods typically encourage exploratory and
dynamic behaviors, it can often be the case that a large portion of learned skills
remains too dangerous and unsafe. In this paper, we introduce the novel problem of
safe skill discovery, which aims at learning, in a task-agnostic fashion, a repertoire
of reusable skills that is inherently safe to be composed for solving downstream
tasks. We propose Safety-Guaranteed Skill Discovery (SGSD), an algorithm that
learns a latent-conditioned skill-policy, regularized with a safety-critic modeling a
user-defined safety definition. Using the pretrained safe skill repertoire, hierarchical
reinforcement learning can solve downstream tasks without the need of explicit
consideration of safety during training and testing. We evaluate our algorithm
on a collection of force-controlled robotic manipulation tasks in simulation and
show promising downstream task performance with safety guarantees. Please find
https://sites.google.com/view/safe-skill|for supplementary videos.

1 Introduction

Safety remains a mandatory requirement in the task deployment of real-world robot manipulation
systems. Recall that the central behaviors constituting robot manipulation tasks are about changing
the state of the surrounding environment by explicitly engaging in a series of physical contact
interactions. While a highly performant robot manipulator must be able to actively exploit and
sequence diverse contact behaviors to solve the given task, physical contact can raise serious safety
issues, e.g., irrecoverable damages to the robot or the surrounding environment. Moreover, various
hardware constraints, including self-collisions and actuation limits, should be strictly satisfied, and
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(a) Skills discovered without safety constraints (b) Safety-Guaranteed Skill Discovery

Figure 1: Snapshots of force-controlled bimanual manipulation behaviors of AMBIDEX discovered
from scratch. Red colored table indicates that the agent is in unsafe state. Violated safety constraints
are listed in each frames. Each row represents a single skill.

other task-specific requirements, e.g., an object should not fall down from the table (see Figure[Ta)),
can also relate to safety issues.

The primary objective of this paper is to develop an intrinsically safe and skilled robot manipulation
system that can efficiently solve a collection of downstream tasks subject to a given set of safety
constraints. We aim to achieve this goal by drawing upon the seemingly unrelated ideas from
unsupervised skill discovery and safe reinforcement learning.

The contribution of this paper is twofold. First, we define the novel problem of safe skill discovery
(SSD), which aims at learning, in a task-agnostic fashion, a repertoire of reusable skills that is
inherently safe to be composed for solving downstream tasks. Second, we introduce SGSD, Safety-
Guarantee Skill Discovery, an algorithm that learns a latent-conditioned skill-policy, regularized with
safety-critic modeling of any user-defined safety definition. Using the pretrained safe skill repertoire,
hierarchical reinforcement learning can solve downstream tasks without explicit consideration of
safety during training and testing. We evaluate our algorithm on a collection of force-controlled
robotic manipulation tasks in simulation and show promising downstream task performance with
safety guarantees.

2 Safe Skill Discovery

Our goal is to solve a set of downstream tasks {7; }_; each of which can be represented as a safety-
aware MDP [11, 7; = (S, A, p, r;, ), with different task reward r;; please refer to Appendix@fer
a formal definition of safety-aware MDP and related notions. The low-level skill-policy m4(als, z)
pretrained in the skill discovery phase is reused to solve all the downstream tasks {7;}Y, by training
task-specific high-level policies w;(z|s).

For this purpose, we require that the low-level skill-policy should not only be trained in such a way to
generate diverse behaviors but also strictly guarantee safety criteria imposed by the binary indicator
7 even when a random sequence of skills (z1, 22, -+ , 21), 2+ ~ p(z|t) are temporally sequenced.
Here p(z|t) is determined by the resampling rate of skills from the fixed prior distribution p(z).

The ensuing constrained optimization problem for our safety-guaranteed skill discovery approach is
formulated as follows:

max MI(z;s,5") s.t. Equron [Qua (5,0)] < €safe- )

e safe

Replacing the mutual information objective with a tractable variational lower bound
MI(Za S, S,) = H(Z) - 7-[(Z|S7 Sl) = IEzwp(z),(s,s’)fva,z [logp(z|s, Sl) - lng(Z)]
2 Ezt,s,s’ [IOg qn(Z‘S, S/)] + (COIlSt),

and adopting a Lagrangian formulation for the safety-critic bound constraint, the surrogate objective
used for skill policy update is given as follows:
max min [E z~p(z) [log qn<Z|S, SI) - )‘(Qsafe(sa a) - Gsafe)] )
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Figure 2: An overview of our safe skill discovery framework that consists of two stages: pre-training
safe skill policies and learning tasks based on the skills. In the first stage, the skill policy 7 is
optimized to minimize risks estimated by the safety-critic, while maximizing the skill discovery
reward given by the skill encoder. The task policy is then optimized to maximize the task reward
using the skill policy as a low-level controller. While the dotted lines denote the computation of the
policy losses, the solid lines denote the actual control diagram of the policies.

Here is how our Safety-Guaranteed Skill Discovery (SGSD) algorithm proceeds. We first sample
random skill sequence (21,22, ,21), 2t ~ p(z|t), and collect state transitions from the on-
policy rollouts as well as the safety indicator Z. At each timestep ¢, policy 7 computes an action
conditioned by the current state s; and skill z;. Using the collected transitions, we then update the
skill discriminator network via max,, Join(n) = E. s s [log g, (z|s, s")].

Then, the skill discovery reward r, = log g,,(2¢|s¢, s1+1) is calculated using the updated ¢,,. To update
the skill policy considering safety constraints, we first update safety-critic Qe (s, @) to minimize the
Bellman error [[1H3]):

‘]Safe(w) :E(s,a,s/,a/)'\/p« (Q;fe,w(sva) - (I(S) + (1 - I(S))VsafeQ:;fe,w(S/7a/)) )2 3

Then, the skill policy 7y is updated by maximizing the surrogate objective (2) using any standard
RL algorithm. We used clipped objective of proximal policy optimization(PPO) [4] with target KL
0.05 and clip ratio 0.2. In addition to the advantage function estimates, we also use a clipped version
of the safety critic Qsare($, a) to prevent over-exploitation of the current belief about safety. We
then optimize the Lagrangian multiplier A. The overall algorithm is summarized in Algorithmm and
depicted in Figure 2]

3 Experiments

We aim to answer the following questions: (1) To what extent does SGSD ensure safety while
learning a skill repertoire? (2) Can any sequential composition of our discovered safe skill repertoire,
i.e., random exploration on latent space Z, ensure safety? (3) Can we successfully solve a set of
contact-rich downstream manipulation tasks while ensuring safety, leveraging our discovered safe
skill repertoire?

All environments are simulated using Isaac Gym[53]]. During training, 16,000 environments (Fig. [T))
each equipped with a table, box, and 14-DoF dual-armed robot AMBIDEX [6]] are simulated in
parallel with a simulation frequency of 100Hz. We aim to discover diverse bi-manual manipulation
skills such as pushing, grasping, flipping, rotating a box using both hands, while ensuring safety
defined with a set of predefined constraints. We define following states as unsafe in the following
experiments: (1) joint position exceeding 95% of its physical limits (2) joint velocity exceeding 10
rad/s (3) excessive contact force of 100 N or more applied to the robot (4) velocity of the robot hands
exceeding 2 m/s (5) the object moving outside of the robot’s reachable workspace. If any one of the
constraints is violated at least once during an episode, the episode is defined as unsafe. Safety rate is
defined as the proportion of safe episodes among all episodes.

3.1 Safe Manipulation Skill Discovery

We choose to maximize the Lipschitz-constrained Skill Discovery (LSD) objective proposed by Park
et al. [[7] for safe manipulation skill discovery. LSD objective encourages the agent to prefer dynamic
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Figure 3: Reward, safety rate, and safety violations during skill discovery phase.
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Figure 4: Comparison of downstream task performances. Position-and-orientation matching task is
given in Figure[6]in the Appendix. Safety rate indicates the ratio of safe episodes out of every 8192
number of randomly reset episodes.

skills with large traveled distances. In practice, we observe that this can lead to the violation of safety
constraints. Figure [3a]shows the discovery rewards and safety rates during skill discovery phase. It
can clearly be observed that almost every behaviors generated by the agent trained without safety
constraints are unsafe. On the other hand, skills discovered with our method SGSD show high safety
rate. Surprisingly, even with tight safety regulations with small g, the agent receives similar scale
of discovery rewards compared to that with no safety constraints while maintaining high safety rate.

In addition, we qualitatively analyze how skills discovered with SGSD satisfies individual safety
constraints by executing random skills z sampled from the prior. The skills discovered without safety
constraints constantly pushes the object outside the robot’s reachable workspace (Figure and
applies excessive forces to the environment (Figure [3b). On the other hand, with skills discovered by
SGSD, the object is gracefully manipulated without any excessive forces applied to the robot, while
at the same time remaining within the reachable Workspaceﬂ From these results, we could validate
that diverse and useful safe skills can be successfully learned entirely from scratch using SGSD.

3.2 Solving Contact-Rich Downstream Tasks

In this section, we show that skills discovered by SGSD can be temporarily composed to solve
various contact-rich downstream manipulation tasks while satisfying the safety constraints. Here we
highlight again that we do not require training of any safety-related information during downstream
task training phase. We consider three downstream tasks: a) orientation matching: reorienting
the object to various target orientations, b) position matching: moving the object to various target
positions, and c) position-and-orientation matching: moving and reorienting the object to target
position and orientation at the same time. For each task, we train a high-level task policy w(z|s, g)
using per-step difference in negative distances to the target state used as a reward function. We
compare our framework with two baselines: ‘skill discovery (SD) without safety’ that follows the
original formulation of LSD without considering any safety constraints and a safe RL method denoted
by ‘SafeRL’ that jointly learns the task policy and the safety-critic; the policy is constrained so that
the safety-critic values of the policy output is kept under 0.01. Our method is denoted by ‘SD with
Safety’. As shown in Figure [] it can be seen that, skills discovered with safety can effectively solve
downstream tasks: it not only is faster at solving the task compared to SafeRL, but also zero-shot
attains high safety rate without further finetuning of the safety-critic or the low-level skill policy.

?See also Appendix@for evaluation of safety over the extended length of random skill composition.
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A Related work

Skill discovery algorithms, also referred to as unsupervised reinforcement learning [§]], aim at
learning behaviors without relying on extrinsic task rewards. Based only on intrinsic motivations,
skill discovery algorithms have shown to be able to learn sufficiently diverse and useful primitive
behaviors which can also be leveraged to solve various downstream tasks. One of the most widely used
objective in skill discovery include mutual information between a latent skill variable and some state
marginals so as to produce diverse and discriminative behaviors in the state space [9} [10} 7} [11}12].

As skill discovery methods typically encourage exploratory and dynamic behaviors owing to the
nature of intrinsic motivation, it can often be the case that a large portion of discovered skills turns
out to be too dangerous, and hence cannot be reused in solving safety-critical downstream tasks. To
the best of our knowledge, there are few studies that formally investigate safety issues in the context
of unsupervised skill discovery [8 [13].

Safety can be addressed in various ways depending on the required level of task performance. In some
cases, it could often be sufficient to manually design, e.g., event-based safety control strategies at
known risky states. However, these ad-hoc safety treatments can essentially restrict task performances
or even fail to address some risks adequately; a gripper that avoids collision cannot grasp anything.

Given that an accurate model of the dynamics and the safety constraints are known, constrained
optimal control methods can formally address safety [14H16]. Furthermore, reachability analysis



offers a more general concept and control synthesis methods for various safety-critical systems
[17420]. However, model-based control methods pose another challenge in accurately modeling and
estimating the contact dynamics and the contact states in practice [21].

Safe reinforcement learning (RL) offers model-free methods for ensuring different concepts of safety
[22} 13]]. While some of them constrain conditional value at risk or probabilistic bounds of rewards
and constraints in a stochastic environment [23H26]], others have studied reversibility and learning
to reset [27,[28]. Most of safe RL methods however assume constrained Markov Decision Process
(CMDP) [29] in which the expected sum of (constraint) cost is minimized while maximizing that
of reward. Among them, the Safety-critic-based methods are the most relevant to our works [[1H3].
They directly learn to estimate the probability of failure in order to guide their robots away from the
actions that are likely to fail. Nevertheless, most of the safe RL methods are dedicated to a given set
of tasks (i.e., safety value conditioned on their task policies) and often tend to generalize poorly for
different tasks.

B Safety-Aware Markov Decision Process

We assume an environment with fully-observable state s, € S, action a; € A, state transition
probability p(s;+1|st, at), and a scalar reward function r; = r(s¢, at, S¢+1) which defines a Markov
Decision Process (MDP) represented as a tuple M = (S, A, p, ). As an incremental construction, a
safety-aware MDP is defined as,

T =(S, Ap,rT) 3)

where a safety-incident indicator Z(s) indicates if a given state s is unsafe or not; Suypsfe =
{s | Z(s) = 1} defines a set of unsafe states.

The goal in safety-aware MDP is to find an optimal stochastic policy that maximizes the expected
cumulative reward with a probability of safety constraint violation bounded by €gasc:

max J () Z_:O St; Aty St41 ]
S.t. E [ ( )] < Esafe, “4)
where pr (1) = p(so) [T—y 7(as|s:)p(st11]s¢, ar) denotes the distribution over state-action trajec-

tories and p,(s) denotes the state marginal distribution induced by the policy .

For a given policy m, the safety-critic Q7. (s¢, a;) is defined by the discounted cumulative failure
probability in the future if starting at state s; and it takes the action ay:

Qe (s, a1) =
I(St) + (1 _I(St))E st+1~vp(-|se,ar) [ Z ’Ysafe st’

S;Np,ﬂ' fort' >t+1 [4/= t+1

b

where vsafe 1s a discounting factor. This cumulative discounted probability of failure satisfies the
following Bellman equation:

5afe(8 a) I(S) + (1 - I(s))]Es/Np(~|s,a) [’ysafeQz;lfe(S/7 a/)} :

o/~ (-s")
C Implementation Details

For the above experiments, 3D position and SO(3) rotation matrix of the object is concatenated into a
12-dimensional vector as an input to the LSD for skill discovery. We reset every environment after
executing 3 different skills, where single skill consists of 100 environment steps. We have empirically
found that sequentially executing multiple skills before manual reset enables reliable sequential
composition of random skills. In addition, to mitigate the issue of sampling out-of-distribution skills
during downstream task planning [30]], we use uniform distribution on the unit hypersphere as our
latent prior p(z), which has a compact support. In the case of the safety-critic, the position and
velocity of the object and the position and velocity of the robot joint are used as inputs to require that



Algorithm 1 Safety-Guaranteed Skill Discovery

1: B < initialize on-policy buffer

g < initialize skill policy

@y < initialize discovery reward models

Qsafe < initialize safety critic

while not converged do
Sample skill sequence (21, -+ , z1), 2t ~ p(z|t)
Sample initial state so ~ p(so)
Collect transitions 7 = (2t, S, at, St4+1,Z(8t))t=0:T

9: Update buffer B
10: for i =1: Ny do

RN AR

11: Update skill discriminator network g,
12: end for

13: Compute reward r(s¢, S¢41, 2¢)

14: fori=1: Npoicy do

15: Update safety-critic Qsafe

16: Update skill policy g

17: Update Lagrangian multiplier A

18: end for
19: end while
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Figure 5: Safety rates at time steps exceeding the horizon seen during skill discovery phase.

the states are fully observable for evaluating safety. We also experimentally found that the Q-value
was better estimated with tanh than sigmoid as the output activation of the safety critic. As for the
size of each network, skill policy and skill discriminator have 4 hidden layers with a layer size of 256,
and value function and safety critic have 4 hidden layers with a layer size of 512. Skill discovery was
done in 12hrs using a single A100 GPU. Algorithm [T shows the pseudo code of our SGSD.

D Generalization over Extended Horizon

Figure [5|shows the safety rate measured while sequentially executing random skills discovered
with SGSD for an extended length of time horizon compared to that used during the skill discovery
training phase. Although the safety rate gradually drops as time progresses, we note that it still
maintains a high safety rate over 90 percent. The decrease in safety rate can be attributed to the agent
visiting out-of-distribution state space on which the safety-critic nor the skill policy has been learned
to explore safely.
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Figure 6: Comparison of downstream task performances.
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